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CHECKPOINTING A COMPUTER
HARDWARE ARCHITECTURE STATE USING
A STACK OR QUEUE

BACKGROUND

Various structures may be implemented in a computing
system to checkpoint and recover a computer hardware archi-
tecture state throughout operation. Non-limiting examples of
such structures may include a register file, a return stack, a
dispatch queue, etc.

In one example, a computer hardware architecture state
may be checkpointed upon entering a runahead mode of
execution. In particular, during a runahead mode, speculative
execution of instructions may cause an incorrect set of
instructions to complete, and incorrectly update a computer
hardware architecture state. Accordingly, a mechanism may
be used to restore the hardware architecture state to an accu-
rate pre-speculation state upon exiting the runahead mode.

In one example, a register file is used to checkpoint the
computer hardware architecture state. The register file may be
implemented as an array with a checkpointed bit for every
functional bit. The register file may include control signals to
indicate when to copy the functional bits to and recover from
the checkpointed bits. For example, before entering the
runahead mode, a ‘checkpoint’ control signal may be asserted
to copy every functional bit (i.e., the contents of the register
file) into a corresponding checkpointed bit. Similarly, upon
exit from the runahead mode, a ‘recover’ signal may be
asserted to copy every checkpointed bit back to the corre-
sponding functional bit.

However, the above described register file implementation
has some issues. For example, the register file is implemented
by way of a customized static random access memory (RAM)
having additional ports to accommodate the checkpoint and
recover control signals as well as additional control logic
necessary to implement the checkpoint and recover function-
ality. The customized RAM (a.k.a., the checkpointed RAM)
may be more complex and costly to employ in a CPU relative
to a RAM (ak.a., a non-checkpointed RAM) that does not
have additional ports and control logic integrated into it.

Furthermore, since all functional bits of the register file are
copied to checkpointed bits upon entering the runahead mode
and all checkpointed bits are restored to functional bits upon
exiting the runahead mode, a substantial current draw and
localized voltage drops may be incurred during each copy
operation. Note that these issues may occur with any check-
pointed structure that is implemented in this manner (i.e., an
en-masse copy of bits). Accordingly, the power electronics of
the CPU may have to be increased to accommodate such
variations in power. The larger power electronics may con-
sume more power relative to power electronics for a non-
checkpointed RAM.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 schematically shows a non-checkpointed random
access memory (RAM) used to implement a checkpointed
data structure for saving and restoring a computer hardware
architecture state according to an embodiment of the present
disclosure.

FIGS. 2-4 show a method for saving and recovering a
computer hardware architecture state according to an
embodiment of the present disclosure.

FIGS. 5-12 schematically show example operation of a
checkpointed stack data structure according to an embodi-
ment of the present disclosure.
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FIG. 13 schematically shows a checkpointed queue data
structure according to an embodiment of the present disclo-
sure.

DETAILED DESCRIPTION

The present disclosure relates to mechanisms for saving
and recovering a computer hardware architecture state (re-
ferred to hereinafter as the “architecture state”). For example,
an architecture state may be saved and recovered in a check-
pointed data structure at entry and exit of a runahead mode of
operation, respectively. More particularly, the present disclo-
sure relates to methods and systems for implementing the
checkpointed data structure using a traditional non-check-
pointed random-access memory (RAM). The non-check-
pointed RAM may not have additional control logic neces-
sary to implement checkpoint and recover functionality for
every bit of the RAM, such as would be required for a check-
pointed register file. Accordingly, the non-checkpointed
RAM may be easier to implement than the checkpointed
RAM.

Since the non-checkpointed RAM does not offer save and
recover functionality via integrated control logic, such func-
tionality may instead be provided via manipulation of the
checkpointed data structure implemented on the non-check-
pointed RAM. Such manipulation may be applicable to
checkpointing a subset of certain hardware structures. In par-
ticular, the checkpointed data structure may be manipulated
such that less than all entries of the checkpointed data struc-
ture may be saved and recovered when switching between
different modes of operation in order to maintain an accurate
architecture state. By saving and recovering less than all
entries, variations in power and general power consumption
may be reduced relative to an approach that copies all bits.
Accordingly, smaller and more energy efficient power elec-
tronics may be implemented with the non-checkpointed
RAM.

In one example, a non-checkpointed RAM may be imple-
mented as a stack, and the stack may be manipulated to act as
the checkpointed data structure. In particular, the non-check-
pointed RAM may include a plurality of entries divided into
a normal stack and a runahead stack. Each stack may be
configured to support push and pop operations to manipulate
entries in the each of the stacks.

During a normal mode of execution of instructions, entries
of the normal stack may be manipulated via push and pop
operations without manipulating entries of the runahead
stack. In order to preserve the architecture state, at the time of
entering a runahead mode, a current version of a top-of-stack
(TOS) pointer of the normal stack may be saved to a check-
pointed version. During the runahead mode of speculative
execution of instructions, entries of the runahead stack may
be manipulated via push and pop operations without manipu-
lating entries of the normal stack. At the time of exiting the
runahead mode, the checkpointed version of the TOS pointer
of the normal stack may be recovered to a current working
copy of the TOS pointer, and operation in the normal mode
may be resumed. Since the entries of the normal stack are not
manipulated during runahead mode, only the TOS pointer of
the normal stack needs to be checkpointed and restored in
order to preserve the architecture state.

In another example, a non-checkpointed RAM may be
implemented as a queue, and the queue may be manipulated
to act as the checkpointed data structure. In particular, the
non-checkpointed RAM may include a plurality of entries
divided into a normal queue and a runahead queue. Each
queue may be configured to support first-in-first-out (FIFO)
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operations to manipulate entries in the each of the queues.
Like the stack implementation, entries of the normal queue
may be manipulated during operation in the normal mode
without manipulating entries of the runahead queue. Further,
entries of the runahead queue may be manipulated during
operation in the runahead mode without manipulating entries
of the normal queue. In order to preserve the architecture
state, at the time of entering the runahead mode, current
versions of a head-of-queue (HOQ) pointer and a tail-of-
queue (TOQ) pointer of the normal queue may be saved to
checkpointed versions. Furthermore, at the time of exiting the
runahead mode, the checkpointed versions may be recovered
to working copies of the HOQ and TOQ pointers, and opera-
tion in the normal mode may be resumed.

It is to be understood that such an approach may not be
applicable to all hardware structures. For example, the
approach may not be applicable to a register file that requires
random access to any single entry as part of an en-masse copy
operation of all entries.

FIG. 1 schematically shows a block diagram of a computer
hardware architecture 100 including a non-checkpointed
RAM 102 (referred to hereinafter as “RAM”). The RAM may
be used to implement a checkpointed data structure for saving
and restoring the architecture state (or a micro-architecture
state). In the illustrated embodiment, the checkpointed data
structure includes stack data structures. More particularly, the
stacks are a return stack configured to store pointers to return
addresses of function calls. Such function calls may be made
during execution of instructions during the normal mode of
operation or during speculative execution of instructions in
the runahead mode of operation.

The RAM 102 may include a plurality of entries 104
divided into a first portion 106 and a second portion 108. In
one particular example, the RAM is 128 entries that are orga-
nized into a normal stack including 64 entries reserved for use
during operation in the normal mode and a runahead stack
including 64 entries reserved for use during operation in the
runahead mode. The RAM may not include functionality to
checkpoint and restore every entry of the RAM.

The normal stack includes a normal TOS pointer 112 that
points to a top entry of the normal stack, and the runahead
stack includes a runahead TOS pointer 114 that points to a top
entry of the runahead stack. In the example where the RAM
includes 128 entries, each TOS pointer may include 7 flip
flops to accommodate any of the possible entries of the RAM.

The hardware architecture 100 may include control logic
110 configured to manipulate entries of the RAM, and more
particularly the normal stack and the runahead stack. In par-
ticular, the control logic may be configured to perform push
and pop operations on either the normal stack or the runahead
stack depending on the current mode of operation.

For a push operation, a multiplexor 116 may receive the
normal TOS pointer and the runahead TOS pointer as inputs,
and an operating mode signal that toggles between the normal
mode and the runahead mode as a select line. The multiplexor
may be configured to select the normal TOS pointer as a
current version of'a TOS pointer for the push operation when
the select line indicates operation in the normal mode. On the
other hand, the multiplexor may be configured to select the
runahead TOS pointer as a current version of the TOS pointer
for the push operation when the select line indicates operation
in the runahead mode. Once the current version of the TOS
pointer is selected for the appropriate operating mode, the
push operation is performed on the appropriate stack. In
particular, the push operation may include incrementing the
current version of the TOS pointer by 1, then writing the data
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(e.g., apointer to a return address) to the current TOS entry of
the appropriate stack of the RAM.

Furthermore, a runahead count 118 may be configured to
track a number of valid entries present in the runahead stack.
In the example where the RAM includes 128 entries, the
runahead count may include 7 flip flops to accommodate any
of the possible entries of the RAM. During the runahead
mode, a push operation may further include incrementing the
runahead count by 1 after the data is written to the TOS entry
of the runahead stack. The runahead count may not be
manipulated during operation in the normal mode. It is to be
understood that upon entering runahead mode, the entries of
the runahead stack are zeroed to establish a clean slate of valid
entries. In other words, entries in the runahead stack do not
persist between runahead episodes.

For a pop operation, a multiplexor 120 may receive the
normal TOS pointer and the runahead TOS pointer as inputs.
The select line of the multiplexor may receive a Boolean
expression indicating that the runahead TOS pointer is
selected as the current version of the TOP pointer, if the
operating mode signal is toggled to the runahead mode and
the runahead count is greater than zero. In the other words, the
multiplexor may be configured to select the normal TOS
pointer as the current version of the TOS pointer for the pop
operation during operation in the normal mode, or during
operation in the runahead mode when there are no valid
entries in the runahead stack. On the other hand, the multi-
plexor may be configured to select the runahead TOS pointer
as the current versions of the TOS pointer for the pop opera-
tion during runahead mode when there is at least one valid
entry in the runahead stack. Once the current version of the
TOS pointer is selected for the appropriate operating mode,
the pop operation is performed on the appropriate stack. In
particular, the pop operation may include returning the data
from the current TOS entry of the appropriate stack of the
RAM, then decrementing the current TOS pointer by 1. Fur-
ther, the pop operation may include decrementing the
runahead count by 1 when applicable.

During operation in the runahead mode, speculative execu-
tion of instructions may cause inaccurate pop operations to be
performed on an empty runahead stack. Since the goal of
operation in the runahead mode is to generate instruction
pre-fetches by detecting cache misses before they would oth-
erwise occur, the inaccurate instructions are permitted to be
executed. Accordingly, when a pop operation is performed on
an empty runahead stack, the zeroed runahead count causes
data in the TOS entry of the normal stack to be returned in
order to complete the instruction. Although the TOS entry
from the normal stack is returned, the data in the TOS entry is
not modified by the pop operation. In other words, entries of
the normal stack are not manipulated during the runahead
mode.

When instructions are being executed in the normal mode,
only the normal stack is active. In other words, all push and
pop operations manipulate the entries in the normal stack
without manipulating entries in the runahead stack. Further-
more, the current version of the TOS pointer of the normal
stack is incremented or decremented according to the push or
pop operations being executed.

When instructions are being speculatively executed in the
runahead mode, only the runahead stack is active. In other
words, all push and pop operations manipulate entries in the
runahead stack without manipulating entries in the normal
stack. Although data from the normal stack may be returned
by a pop operation during operation in the runahead mode
(e.g., when the runahead stack is empty), it is to be understood
that neither the data nor the entry is manipulated by the pop
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operation. Accordingly, the normal stack remains unchanged
by operation in the runahead mode.

Atthe time of entering the runahead mode the TOS pointer
of the normal half may be backed up to a checkpointed ver-
sion 122. At the time of exiting the runahead mode, the
checkpointed version of the TOS pointer may be copied back
to the working copy of the TOS pointer of the normal stack
and execution in the normal mode may be resumed. Since the
normal stack remains unchanged during operation in the
runahead mode, the TOS pointer of the normal stack is the
only thing that needs to be checkpointed in order to preserve
the architecture state.

It is to be understood that the above described hardware
architecture may be implemented to preserve an architecture
state of any suitable computing system. For example, the
hardware architecture may be implemented on-board a CPU
of'a microprocessor to preserve a state of the CPU. In another
example, the hardware architecture may be implemented on-
board a GPU to preserve a state of the GPU. In another
example, the hardware architecture may be implemented on-
board an embedded microcontroller to preserve a state of the
microcontroller.

Although the above described hardware architecture is dis-
cussed in the context of normal and runahead operating
modes, it is to be understood that the above described mecha-
nisms are broadly applicable to saving and recovering an
architecture state in response to any suitable checkpoint and
recover events. Moreover, the architecture state may be saved
and recovered in response switching between any suitable
modes of operation, as well as switching between any suitable
number of modes of operation.

It is to be understood that the RAM may be used to imple-
ment any suitable checkpointed data structure for saving and
restoring an architecture state. Furthermore, it is to be under-
stood that the first portion and the second portion of the RAM
may be divided into any suitable number of entries. For
example, the first portion may include more entries than the
second portion or vice versa.

FIGS. 2-4 show a method 200 for saving and recovering an
architecture state according to an embodiment of the present
disclosure. For example, the method 200 may be performed
by the hardware architecture 100 shown in FIG. 1.

At 202, the method 200 may include determining whether
operation is entering into the runahead mode. For example, a
checkpoint event, such as an instruction cache load miss, may
trigger operation in the runahead mode. If operation enters the
runahead mode, then the method 200 moves to 204. Other-
wise, the method 200 moves to 220.

At 204, the method 200 may include saving the current
version of the TOS pointer of the normal stack to the check-
pointed version.

At 206, the method 200 may include zeroing the entries in
the runahead stack.

At 208, the method 200 may include determining whether
a push operation is encountered during operation in the
runahead mode. If a push operation is encountered, then the
method 200 moves to 210. Otherwise, the method 200 moves
to 230.

At210, the method 200 may include incrementing the TOS
pointer of the runahead stack by 1.

At 212, the method 200 may include writing the data of the
push operation to the current TOS entry of the runahead stack
as indicated by the TOS pointer of the runahead stack. In one
example, the data is a pointer to a return address of a function
call.

At 214, the method 200 may include incrementing the
runahead counter by 1.
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At 216, the method 200 may include determining whether
operation is exiting runahead. For example, a recover event,
such as an instruction cache load miss being resolved, may
trigger resumption of operation in the normal mode. If opera-
tion exits the runahead mode, then the method 200 moves to
218. Otherwise, the method 200 returns to 208.

At 218, the method 200 may include recovering the check-
pointed version of the TOS pointer of the normal stack as the
current version of the TOS pointer.

At 220, the method 200 may include determining whether
a push operation is encountered during operation in the nor-
mal mode. Ifa push operation is encountered, then the method
200 moves to 222. Otherwise, the method 200 moves to 226.

At 222, the method 200 may include incrementing the TOS
pointer of the normal stack by 1.

At 224, the method 200 may include writing the data of the
push operation to the current TOS entry of the normal stack as
indicated by the TOS pointer of the normal stack. In one
example, the data is a pointer to a return address of a function
call.

At 226, the method 200 may include determining whether
apop operation is encountered during operation in the normal
mode. If a pop operation is encountered, then the method 200
moves to 228. Otherwise, the method 200 returns to other
operations.

At 228, the method 200 may include returning data at the
current TOS entry of the normal stack as indicated by the TOS
pointer of the normal stack.

At 230, the method 200 may include decrementing the
TOS pointer of the normal stack by 1.

At 232, the method 200 may include determining whether
a pop operation is encountered during operation in the
runahead mode. If a pop operation is encountered, then the
method 200 moves to 234. Otherwise, the method 200 returns
to other operations.

At 234, the method 200 may include determining whether
the runahead count of valid entries in the runahead stack is
non-zero. If the runahead count is non-zero, then the method
200 moves to 236. Otherwise, the method 200 moves to 242.

At 236, the method 200 may include returning data at the
current TOS entry of the runahead stack as indicated by the
TOS pointer of the runahead stack.

At 238, the method 200 may include decrementing the
TOS pointer of the runahead stack by 1.

At 240, the method 200 may include decrementing the
runahead count by 1.

At 242, the method 200 may include returning data at the
current TOS entry of the normal stack as indicated by the TOS
pointer of the normal stack.

At 244, the method may include decrementing the TOS
pointer of the normal stack by 1.

The above described method may be performed to save and
recover an architecture state using a non-checkpointed RAM
divided into a normal stack and a runahead stack. In particu-
lar, during the normal mode, entries of the normal stack may
be manipulated via push and pop operations without manipu-
lating entries of the runahead stack. Similarly, during the
runahead mode, entries of the runahead stack may be manipu-
lated via push and pop operation without manipulating entries
of the normal stack. Furthermore, a current version of the
TOS pointer that points to a top entry of the normal stack may
be saved to a checkpointed version in response to entering the
runahead mode. Correspondingly, the checkpointed version
of'the TOS pointer may be recovered to the current version in
response to exiting the runahead mode. Accordingly, the
entire architecture state may be preserved during operation in
the runahead mode by only having to copy a single entry (e.g.,
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the TOS pointer of the normal stack) as opposed to having to
copy every entry of a RAM. In this way, the architecture state
may be saved and recovered in a manner than employs less
complex components and consumes less power relative to a
register file implemented using a checkpointed RAM.

It is to be understood that the above described method may
be broadly applicable to any suitable checkpointed data struc-
ture. For example, the method may be performed in a similar
manner by a hardware architecture that includes a normal
queue and a runahead queue implemented on a non-check-
pointed RAM.

It will be appreciated that methods described herein are
provided for illustrative purposes only and are not intended to
be limiting. Accordingly, it will be appreciated that in some
embodiments the methods described herein may include
additional or alternative processes, while in some embodi-
ments, the methods described herein may include some pro-
cesses that may be reordered, performed in parallel or omitted
without departing from the scope of the present disclosure.
Further, it will be appreciated that the methods described
herein may be performed using any suitable software and
hardware in addition to or instead of the specific examples
described herein.

FIGS. 5-12 schematically show example operation of a
checkpointed stack data structure 500 according to an
embodiment of the present disclosure. The checkpointed
stack data structure includes a normal stack 502 and a
runahead stack 504.

In FIG. 5, operation is entering the runahead mode. The
normal stack includes a plurality of entries that have been
pushed onto the stack. In particular, the entries include point-
ers to return addresses of function calls. In response to enter-
ing the runahead mode, a current version of the TOS pointer
of the normal stack is saved as a checkpointed version, the
entries of the runahead stack are zeroed, and the runahead
count of valid entries in the runahead stack is zero.

InFIG. 6, a push operation is performed. Since operation is
in runahead mode, the TOS pointer of the runahead stack is
incremented to point to the TOS entry of the runahead stack.
Data of the push operation is written to the TOS entry of the
runahead stack as indicated by the TOS pointer of the
runahead stack. The runahead count is incremented to 1 by the
push operation.

In FIG. 7, another push operation is performed to write data
to a TOS entry of the runahead stack. Since operation is in
runahead mode, the TOS pointer of the runahead stack is
incremented to point to the TOS entry of the runahead stack.
Data of the push operation is written to the TOS entry of the
runahead stack as indicated by the TOS pointer of the
runahead stack. The runahead count is incremented to 2 by the
push operation.

InFIG. 8, a pop operation is performed. Since the runahead
count is non-zero and operation is in the runahead mode, the
data at the TOS entry of the runahead stack is read, and the
data is removed from the runahead stack. The TOS pointer of
the runahead stack is decremented to point to the current TOS
entry of the runahead stack. The runahead count is decre-
mented to 1 by the pop operation.

In FIG. 9, another pop operation is performed. Since the
runahead count is non-zero and operation is in the runahead
mode, the data at the TOS entry of the runahead stack is read,
and the data is removed from the runahead stack. The TOS
pointer of the runahead stack is decremented to null since the
runahead stack is empty. The runahead count is decremented
to zero by the pop operation.

In FIG. 10, another pop operation is performed. Since the
runahead count is zero and operation is in the runahead mode,
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the data at the TOS entry of the normal stack is read, and the
data is not removed or otherwise manipulated from the nor-
mal stack. The TOS entry of the normal stack is decremented
by the pop operation.

In FIG. 11, another pop operation is performed. Since the
runahead count is zero and operation is in the runahead mode,
the data at the entry of the normal stack pointed to by the TOS
pointer of the normal stack is read, and the data is not removed
or otherwise manipulated from the normal stack. In this case,
the entry is the second entry from the top of the stack. The
TOS entry of the normal stack is decremented by the pop
operation.

In FIG. 12, operation is exiting runahead. The check-
pointed version of the TOS pointer of the normal stack is
recovered as the current version of the TOS pointer of the
normal stack in response to exiting the runahead mode. Once
the TOS pointer of the normal stack is recovered, operation in
the normal mode is resumed.

FIG. 13 schematically shows a checkpointed queue data
structure 1300 according to an embodiment of the present
disclosure. The checkpointed queue data structure includes a
normal queue 1302 and a runahead queue 1304. The normal
queue may include a HOQ pointer that points to a first or head
entry of the normal queue and a TOQ pointer that points to a
last or tail entry of the normal queue. The runahead queue
may include a HOQ pointer that points to a first or head entry
of'the runahead queue and a TOQ pointer that points to a last
or tail entry of the runahead queue. The queue data structure
may be manipulated to save and recover an architecture state
in a similar manner to the stack data structure described
above. However, the HOQ pointer and the TOQ pointer of the
normal queue may be saved as checkpointed versions in
response to entering the runahead mode and the checkpointed
versions may be recovered as current version in response to
exiting the runahead mode.

This written description uses examples to disclose the
invention, including the best mode, and also to enable a per-
son of ordinary skill in the relevant art to practice the inven-
tion, including making and using any devices or systems and
performing any incorporated methods. The patentable scope
of the invention is defined by the claims, and may include
other examples as understood by those of ordinary skill in the
art. Such other examples are intended to be within the scope
of the claims.

The invention claimed is:

1. A method for saving and recovering a hardware archi-
tecture state using a random-access memory (RAM) includ-
ing a plurality of entries divided into a first portion and a
second portion, the method comprising:

during a first mode of operation, manipulating entries in the

first portion, where the first mode is a normal mode for
execution of instructions;

saving a current version of less than all of the entries of the

first portion to a checkpointed version in response to a
checkpoint event that triggers operation in a second
mode of operation, where the second mode is a runahead
mode for speculative execution of instructions;

upon entering the second mode of operation, zeroing

entries in the second portion;

during the second mode of operation, manipulating entries

in the second portion; and

recovering the checkpointed version of less than all of the

entries of the first portion as the current version in
response to a recover event that triggers resumption of
operation in the first mode.
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2. The method of claim 1, where saving the current version
includes saving a single entry of the first portion to preserve a
state of the entire first portion.

3. The method of claim 1, where the first portion is orga-
nized into a first stack and the second portion is organized into
a second stack.

4. The method of claim 3, where the current version of less
than all of the entries of the first portion is a top-of-stack
pointer that points to a top entry of the first stack.

5. The method of claim 4, where the first stack and the
second stack are return stacks that store pointers to return
addresses of function calls.

6. The method of claim 1, where the first portion is orga-
nized into a first queue and the second portion is organized
into a second queue.

7. The method of claim 6, where the current version of less
than all of the entries of the first portion includes a head-of-
queue pointer that points to a first entry in the first queue and
a tail-of-queue pointer that points to a last entry of the first
queue.

8. The method of claim 1, where during the first mode, the
entries of the second portion are not manipulated and during
the second mode, the entries of the first portion are not
manipulated.

9. A method for saving and recovering a hardware archi-
tecture state using a random-access memory (RAM) includ-
ing a plurality of entries divided into a normal portion and a
runahead portion, the method comprising:

during a normal mode of execution of instructions,

manipulating entries of the normal portion without
manipulating entries of the runahead portion;

saving a current version of a pointer that points to an entry

of the normal portion to a checkpointed version to pre-
serve a state of the normal portion in response to entering
a runahead mode of speculative execution of instruc-
tions;

upon entering the runahead mode, zeroing entries in the

runahead portion;

during operation in the runahead mode, manipulating

entries of the runahead portion without manipulating
entries of the normal portion; and

recovering the checkpointed version of the pointer as the

current version in response to exiting the runahead
mode.

10. The method of claim 9, where the normal portion is
organized into a first stack and the runahead portion is orga-
nized into a second stack.

11. The method of claim 10, where the pointer is a top-of-
stack pointer that points to a top entry of the first stack.

12. The method of claim 10, where the first stack and the
second stack are return stacks that store pointers to return
addresses of function calls of instructions.

13. The method of claim 9, where the normal portion is
organized into a first queue and the runahead portion is orga-
nized into a second queue.
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14. The method of claim 13, where the pointer is a head-
of-queue pointer that points to a first entry in the first queue
and the method further comprises: saving a current version of
a tail-of-queue pointer that points to a last entry of the first
queue to a checkpointed version of the tail-of-queue pointer
in response to entering the runahead mode; and recovering the
checkpointed version of the tail-of-queue pointer as the cur-
rent version in response to exiting runahead mode.

15. The method of claim 9, wherein the normal portion
includes a first half of the plurality of entries of the RAM and
the runahead portion includes a second half of the plurality of
entries of the RAM.

16. A method for saving and recovering a hardware archi-
tecture state using a random-access memory (RAM) includ-
ing a plurality of entries divided into a normal stack and a
runahead stack, the method comprising:

during a normal mode of execution of instructions,
manipulating entries of the normal stack without
manipulating entries of the runahead stack;

saving a current version of a top-of-stack pointer that
points to a top entry of the normal stack to a check-
pointed version in response to entering a runahead mode
of speculative execution of instructions;

upon entering the runahead mode, zeroing entries in the
runahead stack;

during the runahead mode, manipulating entries of the
runahead stack without manipulating entries of the nor-
mal stack; and

recovering the checkpointed version of the top-of-stack
pointer as the current version in response to exiting the
runahead mode.

17. The method of claim 16, wherein during the runahead
mode, manipulating includes performing a push operation
including incrementing a top-of-stack pointer of the runahead
stack, writing a return address pointer into an entry of the
runahead stack corresponding to the top-of-stack pointer of
the runahead stack, and incrementing a runahead valid entry
count.

18. The method of claim 16, wherein during the runahead
mode, manipulating includes performing a pop operation
including if a runahead valid entry count is non-zero, return-
ing a top entry of the runahead stack corresponding to a
top-of-stack pointer of the runahead stack, decrementing the
top-of-stack pointer of the runahead stack, and decrementing
the runahead valid entry count.

19. The method of claim 16, wherein during the runahead
mode, manipulating includes performing a pop operation
including if a runahead valid entry count is zero, returning a
top entry of the normal stack corresponding to a top-of-stack
pointer of the normal stack, and decrementing the top-of-
stack pointer of the normal stack.

#* #* #* #* #*



